06 Nov 2019

Increasing MS lipidomics power through parameter optimization and In Silico Simulation

Hutchins et al (2019) recently published a paper in Analytical Chemistry presenting an algorithm which identifies parameter sets in a way that is quicker and more accurate than typical methods.

Find Us

06 Nov 2019

Hutchins et al (2019) recently published a paper in Analytical Chemistry presenting an algorithm which identifies parameter sets in a way that is quicker and more accurate than typical methods.

The issue of effectively profiling the diversity and range of biomolecules is an important one to consider in Mass Spectrometry, and relies on well-sought out selection of acquisition parameters. However, acquisition parameters are generally selected in a way that is time-consuming and tends to produce lacking results.

By creating an algorithm which simulates LC-MS/MS lipidomic data acquisition performance in a benchtop quadrupole-Orbitrap Mass Spectrometer system and pairing it with an algorithm that defines constrained parameter optimization, researchers were able to efficiently identify LC-MS/MS method parameter sets for specific sample matrices. Additionally, researchers used a simulation called in silico to demonstrate how developments in mass spectrometer speed and sensitivity will result in even more effective biomolecule identification.

Graphical abstract from Hutchins et al (2019) which details the parameter optimization and in silico simulation methods.
Instrument parameters --> model MS acquisition --> simulate lipid IDs.
Find Us
Leave a comment
More Posts
Comments

Comments are closed.