quantitative proteomics

Viewing posts tagged quantitative proteomics

An Accurate Mass Defect-based labeling strategy for Quantitative Proteomics

Zhong et al (2019) wrote about their development of an accurate mass-defect based labelling strategy for MS1-centric quantification in a recent Analytical Chemistry paper

Specifically, researchers developed 5-plex mass defect N, N-dimethyl leucine (mdDiLeu) tags. These tags have multiple benefits; they can aid in the quantification of biological samples and have increased multiplexing due to the addition of mass difference isotopologues. Additionally, the synthesis of these cost effective tags is straightforward and only requires one reaction step, which can be done in any lab. Also, this mass defect-based labelling strategy is more accurate than isobaric label-based reporter ion quantification, as the latter is impacted by ratio compression.

In this paper, Zhong et al (2019) demonstrate the efficacy of 5-plex mdDiLeu tags for quantitative proteomics by conducting mass spectrometry experiments with these tags on labelled Saccharomyces cerevisiae lysate digest.

Graphical abstract for Zhong et al (2019) depicting the accurate mass-defect labelling strategy used.

Acute-Phase proteins differ in mice with and without prostate inflammation

L. Hao et al conducted a quantitative proteomic analysis on induced prostate inflammation in mice and published a paper in the American Journal of Physiology-Renal Physiology.

Researchers compared the quantitative proteomic analysis of urine from mice with and without prostate-specific inflammation. Prostate inflammation as it is a key symptom of many different prostate conditions, such as infection and cancer, and therefore by doing so one gains a better understanding of disease mechanisms.

Researchers induced prostate-specific inflammation by conditional prostate epithelial IL-1β expression. Next, they ran urine sample tests and quantified urinary proteins. L. Hao et al found that different levels of acute-phase response proteins (proteins which have plasma concentrations that increase or decrease in response to inflammation) were represented between mice with and without prostate inflammation; these were haptoglobin, inter-α-trypsin inhibitor, and α1-antitrypsin 1-1.

Mass-spectrometry-based quantitative urinary proteomics is an important and powerful method for discovering biomarkers and uncovering molecular urological mechanisms.

Graphical abstract for Hao et al, depicting the quantitative proteomic analysis of mice urine.