Viewing posts tagged FAIMS

Biologically relevant proteins in Alzheimer’s Disease

Proteomic analysis of cerebrospinal fluid (CSF) holds great promise in understanding the progression of neurodegenerative diseases, including Alzheimer’s disease (AD). As one of the primary reservoirs of neuronal biomolecules, CSF provides a window into the biochemical and cellular aspects of the neurological environment. Using mass spectrometry technologies, McKetney et. al. quantified 700 proteins across 10 pairs of age- and sex-matched participants. Using the paired structure, they identified a small group of biologically relevant proteins that show substantial changes in abundance between normal and AD participants. These findings suggest the utility of fractionating a single sample and using matching to increase proteomic depth in CSF.

Read the article: Pilot Proteomic Analysis of Cerebrospinal Fluid in Alzheimer’s Disease. Proteomics Clinical Applications.

Recent publication highlights phosphoproteome analysis using FAIMS

Mass spectrometry is the premier tool for identifying and quantifying protein phosphorylation. Analysis of phosphopeptides requires enrichment, and even after that step, the samples remain highly complex and exhibit broad dynamic range of abundance. In a recent publication, Muehlbauer et al. describe a method for integrating a high-field asymmetric waveform ion mobility spectrometry (FAIMS) device into the workflow. The data collected with FAIMS yielded a 26% increase in total reproducible measurements, leading researchers to conclude that the new FAIMS technology is a valuable addition to any phosphoproteomic workflow, with greater benefits emerging from longer analyses and higher amounts of material.

Read the publication here: Global Phosphoproteome Analysis Using High-Field Asymmetric Waveform Ion Mobility Spectrometry on a Hybrid Orbitrap Mass Spectrometer