proteomic and transcriptomic analyses of toxoplasma gondii infection

Viewing posts tagged proteomic and transcriptomic analyses of toxoplasma gondii infection

Proteomic and Transcriptomic analyses of Toxoplasma gondii infection

Garfoot et al recently published a paper in BMC Genomics on the proteomic and transcriptiomic analyses of early and late-stage Toxoplasma gondii infection found in mice brains.

Toxoplasma gondii is a protozoan pathogen responsible for the infectious disease “toxoplasmosi,” and this pathogen is of researcher utility as it is capable of infecting a host’s brain, transitioning from fast-growing to latent morphology morphology life stages (from “tachysoite” to “bradyzoite”), and eventually creating neuronal cysts which are largely invisible to the host, as well as resilient against the host’s immune response and modern therapeutics.

Garfoot et al analyzed results from transcriptional and proteomic analyses of fast-growing (bradyzoite) fractions of the infection from mouse brains over a period of 21-150 days and, through deep sequencing of expressed transcripts found that one third of the transcripts were more enriched compared to the slow-growing tachysoites. Furthermore, researchers found that the transcript which grew the most over the course of the infection was the sporoAMA1 transcript.

As a result of this work, researchers have expanded the transcriptional profile of in vivo toxoplasmosis bradyzoites.

Graphical abstract for Garfoot et al's recently published a paper in BMC Genomics on the proteomic and transcriptiomic analyses of early and late-stage Toxoplasma gondii infection found in mice brains.